
Pseudo-File-Systems

Brent B. Welch and John K. Ousterhout

Computer Science Division
Electrical Engineering and Computer Sciences

University of California
Berkeley, CA 94 720

ABSTRACT

This paper describes a facility that transparently extends the Sprite distributed file

system to include foreign file systems and arbitrary user services. A pseudo-file-system

is a sub-tree of the distributed hierarchical name space that is implemented by a user

level server process. A pseudo-file-system fits· naturally into the Sprite distributed sys

tem; the server runs on one host and access from other hosts is handled in the same way

as access to regular Sprite file servers. The pseudo-file-system interface is general

enough to be used for version control systems, and access to database servers, as well as

access to other kinds of file systems. We currently use a pseudo-file-system server to
provide access to NFS file servers from Sprite workstations.

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
APR 1989 2. REPORT TYPE

3. DATES COVERED
 00-00-1989 to 00-00-1989

4. TITLE AND SUBTITLE
Pseudo-File-Systems

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of California at Berkeley,Department of Electrical
Engineering and Computer Sciences,Berkeley,CA,94720

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
This paper describes a facility that transparently extends the Sprite distributed file system to include
foreign file systems and arbitrary user services. A pseudo-file-system is a sub-tree of the distributed
hierarchical name space that is implemented by a user-level server process. A pseudo-file-system fits
naturally into the Sprite distributed system; the server runs on one host and access from other hosts is
handled in the same way as access to regular Sprite file servers. The pseudo-file-system interface is general
enough to be used for version control systems, and access to database servers, as well as access to other
kinds of file systems. We currently use a pseudo-file-system server to provide access to NFS file servers
from Sprite workstations.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

14

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Pseudo-File-Systems

Brent B. Welch
John K. Ousterhout

Computer Science Division
Electrical Engineering and Computer Sciences

University of California
Berkeley, CA 94720

Abstract

This paper describes a facility that transparently extends the Sprite distributed file
system to include foreign file systems and arbitrary user services. A pseudo-file
system is a sub-tree of the distributed hierarchical name space that is implemented by
a user-level server process. A pseudo-file-system fits naturally into the Sprite distri
buted system; the server runs on one host and access from other hosts is handled in
the same way as access to regular Sprite file servers. The pseudo-file-system inter
face is general enough to be used for version control systems, and access to database
servers. as well as access to other kinds of file systems. We currently use a pseudo
file-system server to provide access to NFS file servers from Sprite workstations. t

1. Introduction

Sprite [Ousterhout88] is a network operating system that is centered around its

shared file system. The underlying distribution of the system is hidden behind the file

system, which transparently provides access to local or remote files to all the Sprite hosts

in the network. We designed the file system to cleanly handle local and remote file

access through an internal kernel interface much like the vnode [Kleiman86] or gnode

[Rodriguez86] interfaces in the UNIX1 and ULTRIX2 kernels. This kind of structure

supports modular additions to the kernel to support other types of file systems. For

t This work was supported in part by the Defense Advanced Research Projects Agen
cy under contract N00039-85-C-0269, and in part by the National Science Foundation
under grant ECS-8351961.

1 UNIX is a registered trademark of A.T.&T.
2 UL TRIX is a registered trademark of Digital Equipment Corporation.

example, we could have provided access to NFS3 [Sandberg85] file servers by adding an

NFS file system type to the kernel. However, we decided instead to add a file system

type that allows further extensions to the system to be implemented in user-level server

processes instead of inside the kernel. We call the new file system type a pseudo-file

system.

Our main motivation for implementing pseudo-file systems was to provide access to

existing NFS servers so that users could gradually switch over to using Sprite instead of

UNIX. However, we think that pseudo-file-systems will also be useful for a variety of

other applications where generality and ease of implementation are more important than

achieving the absolute maximum performance. For example, a version control system

might be implemented as a pseudo-file-system that automatically checks files in and out

whenever they are used. Or, an archive service might represent itself as a pseudo-file

system with a directory structure that indicates date of archival. In this case the perfor

mance overhead of the user-level implementation would be overshadowed by the cost of

archive retrieval. Pseudo-file-systems provide a general mechanism for extending the

naming and I/0 structure of the file system with user-implemented applications.

The advantages of user-level implementation of system services have been pro

moted before by designers of message-based kernels [Cheriton84]. Debugging is easier

because the server is an ordinary application and the standard debugging tools apply to it.

The kernel remains smaller and more reliable. It is easier to experiment with new types

of services. The pseudo-file-system approach has all of these advantages, plus it provides

more structure than a message-based kernel. The file system orientation of the system

means that there is a standard interface to the various system services so the environment

is easy for users to understand. An archive service or a database, for example, can be

accessed like the rest of the file system.

The file system support provided by the kernel allows a pseudo-file-system server to

be simpler than a corresponding server in a pure-message based system. The distributed

name space is managed by the operating system. The server implements its part of the

name space and lets the system handle the problems of server location and remote access.

The kernel does crash detection and supports automatic recovery of our file servers. The

kernel buffers file data to optimize I/0. We are extending our recovery and caching

mechanisms to support pseudo-file-system servers. Thus, Sprite is a "file-system-based"

kernel that provides a standard interface to users and applications and provides more sys
tem support for user-implemented services than a message-based kernel.

A potential disadvantage of our approach, however, is that the performance of the

pseudo-file-system will be degraded by its user-level implementation. Our measure

ments suggest that the performance degradation is as much as 50 percent for I/0 inten
sive applications.

The remainder of this paper is organized as follows. Section 2 describes the way

the Sprite distributed file system is organized. Section 3 describes the kernel structure

that supports pseudo-file-systems. Section 4 describes our NFS pseudo-file-system and

gives some performance results. Section 5 outlines our current work to extend the

3 NFS is a registered trademark of Sun Microsystems.

2

kernel's caching and recovery systems to pseudo-file-systems. Section 6 reviews related

work, and Section 7 gives our conclusions.

2. The Structure of the Distributed Name Space

Pseudo-file-systems are a natural extension of mechanisms already present in Sprite

to support distribution. The file system is organized into domains controlled by different

servers. Hosts that access the file system are called clients. A domain can be imple

mented by the local operating system kernel, it can be implemented at a remote host, or it
can be implemented as a pseudo-file-system by a user-level process. Each domain is a

sub-tree of the hierarchical name space, and the sub-trees can be nested arbitrarily to

form the global hierarchy. The division of the name space into different domains is tran

sparent to users and application programs. There is just one name space shared by all the

Sprite hosts, and its distribution among servers is hidden by the operating system.

The distribution of the name space is managed by the operating system with a prefix
table mechanism [Welch86a]. Each domain is identified by a prefix that is the name of

the domain's top-level directory. The kernel on each host maintains a prefix table that is

used to map a pathname to a domain, its server, and its type. The prefix tables are

,/_/ ~:=-,
~

cc Is edi: .. /
/

•, .~~,.·

~--

B

prefix server

''/'' A

"/cmds" B

...

// root ("f') '\
/: \
/ ! ''/users'' c

etc

I

----.... _\

X /l~ ./--.....
11\:: I "' \~ --.....

. / (staff sprite \ / archive ······---...

/'It\/\'/~-

·..... -=----···/· \\ ____ io_~_ // (___ ~_::: ________ ~--------·····)
c

''/users/archive'' D

passwd

D

Figure 1. This shows the file system hierarchy and a prefix table that partitions the
hierarchy into four domains. The distribution is transparent to applications. A domain's
server might be the local operating system kernel, a remote Sprite kernel, or a user-level
pseudo-file-system server. The server's type and a token that identifies the domain are
also kept in the prefix table. For example, "/users/archive" can be implemented as a
pseudo-file-system that presents a name space organized by date of archival.

3

managed as caches that contain information about the domains exported by a host and the
domains currently in use by a host. The system automatically adds prefixes as new areas
of the name space are accessed, and it automatically locates the server of a domain. Fig
ure 1 shows an example of a file system divided into four domains and a prefix table that
defines the division.

The use of. the prefix tables is simple. During name lookup, absolute pathnames
(those beginning at the root of the hierarchy) are compared against a client's prefix table
and the longest matching prefix determines the domain. Operations on relative path
names bypass the prefix table and are sent directly to the server of the process's current
working directory. In both cases the server is passed a relative pathname and a token that
identifies the pathname's starting point. The token comes from the prefix table entry, or
from the open file information associated with the current working directory.

The layout of the domains is determined by remote links contained in the name
space. When a server encounters a remote link during name lookup it returns a prefix
and the remaining pathname to the client kernel. If the prefix is new to the client kernel
then its prefix table is updated and the domain's server is located using a broadcast proto
col. The lookup algorithm goes back and forth between the client kernel and various
servers until the lookup completes. There is no centralized agent that has to know about
the complete structure of the name space.

The prefix table mechanism was designed to support a distributed set of file servers,
but it generalizes easily to support pseudo-file-systems. A pseudo-file-system is treated
like any other domain. The pseudo-file-system server registers itself with the local kernel
and the prefix table mechanism automatically incorporates the pseudo-file-system into
the distributed name space. The benefit of this is that there is no visible distinction
between a pseudo-file-system and other parts of the file system. Objects in a pseudo
file-system are named and accessed like the files and devices implemented by regular
Sprite file servers.

3. Kernel Architecture

3.1. The File System Switch

Within the Sprite kernel, the file system is structured to handle different kinds of file
systems by using an operation switch similar to the vnode or gnode switches in the UNIX
and ULTRIX kernels. The prefix table is used by generic top-level procedures to deter
mine the server for a pathname and its type: a local file systCWI, a remote file system, or a
pseudo-file-system. The file system type is used to branch through the switch to the
proper naming procedure.

The remote file system type is used to access either a remote Sprite file server or a
remote pseudo-file-system server. The kernel uses a network RPC protocol [Welch86b]
to forward the request to the remote host. When a kernel receives a network request the
token that identifies the prefix also indicates if the domain is a local file system or a
pseudo-file-system. The naming operation switch is used again to branch to the correct
routine. This is depicted in Figure 2.

4

user-level network

• •
Remote-FS Local Pseudo-FS

Network File Request

R.PC System Response

• network disk user-level

.IJ server process

; ~

C><J u I •
Figure 2. There are three types of file systems implemented in Sprite: local, remote, and
user-level. There is a standard interface between the generic top-level file system pro
cedures and the lower-level type-specific procedures so that differences among the types
are hidden above that interface. The arrows entering at the top represent operations
made from user-level via the system call interface, or from other hosts via network RPC.
The arrows leaving the boxes represent operations that are forwarded to other Sprite
hosts via network RPC, operations on the local disk, or operations forwarded to a user
level pseudo-file-system server. The miniature version of the picture connected to the
network output arrow represents the use of the operation switch at a remote node to
select either a local file system or a pseudo-file-system.

3.2. The Kernel-to-Server Interface

The kernel is in charge of forwarding operations on the pseudo-file-system up to the
user-level server process. The operations can either originate from system calls made by
user processes executing on the same host, or from network RPC requests that result
from operations on the pseudo-file-system made by user processes at other hosts. The
communication between the kernel and the server is implemented as a request-response
protocol. The kernel formats a request message containing the parameters of the opera
tion and passes this to the pseudo-file-system server. The server then implements the
operation and responds with results and an error status.

A pseudo-file server typically has access to many request-response streams at any
given time. For each domain managed by the server there is a single request-response
stream used for all naming operations on the domain (see Table 1 for a listing of the
naming operations). In addition, a separate request-response stream is established each

5

Pseudo-File-System Operations
Open Open an object for further I/0 operations.
GetAttr Get the attributes of an object.
SetAttr Set the attributes of an object.
Mak:eDevice Create a special device object.
MakeDirectory Create a directory.
Remove Remove an object.
Remove Directory Remove a directory.
Rename Change the name of an object.
HardLink Create another name for an existing object.
SymbolicLink Create a symbolic link or a remote link.
Domainlnfo Return information about the domain.

Table 1. This lists the naming operations that are implemented by pseudo-file-system
servers, and the Domainlnfo operation that returns information about the whole pseudo
file-system.

time an object in the pseudo-file-system is opened; this request-response stream is used
by the kernel to forward I/0 operations to the server (see Table 2 for a list of the I/0
operations). Each request-response stream appears to the server as a standard UNIX-like
I/0 channel. A pseudo-file server may multiplex itself among the various streams either
as a single process that uses select to wait for incoming requests on all of the streams, or
as a team of processes where each process services one stream.

The request-response mechanism used for pseudo-file-systems is a simple extension
of the mechanism already in place to implement pseudo-devices. A pseudo-device is an
object that appears like a file, but whose I/0 operations are implemented by a user-level
server process. The request-response protocol for pseudo-file-systems is identical to that
for pseudo devices except that the naming operations in Table 1 do not exist for pseudo
devices. See [Welch88] for details of the request-response protocol.

Read
Write
WriteAsync
Ioctl
GetAttr
SetAttr
Close

Pseudo-Device Operations
Transfer data from an object.
Transfer data to an object.
Write without waiting for completion.
Make a special operation on an object
Get attributes of an object.
Set attributes of an object.
Close an I/0 connection to an object.

Table 2. 1/0 operations on an object opened in a pseudo-file-system. The object is
treated by the kernel like a pseudo-device. 1/0 operations on the object are forwarded to
the pseudo-file-system server using the pseudo-device protocol.

6

3.3. A Flexible Name-to-Object Mapping

The file system architecture also makes it natural for a name in a pseudo-file-system

to map to a regular file, a device, a pseudo-device, or a pipe. A source control system,

for example, can map names with version numbers back to regular Sprite files. A

rendez-vous service can map names to pipes in order to hook up processes. Thus the

pseudo-file-system mechanism can be used to present a different name space for objects

whose l/0 functions are implemented by the operating system.

This flexible mapping of names to objects was designed to support remote device

access. We had to be able to name a local device through a remote file server. We

designed our architecture to clearly separate naming operations and I/0 operations so this

would be possible. A second operation switch is used for I/0 operations, and the type

used to branch through the switch is an object type like device, remote device, file,

remote file, pseudo-device, remote pseudo-device, or pipe.

Mapping a name in the pseudo-file-system to an arbitrary object is implemented by

passing open file descriptors between processes. In response to an open request, a

pseudo-file-system server can open some existing object, i.e. a file, and then pass off its

descriptor for the open file. This is done as an alternative to creating a request-response

connection for the I/0 operations as described in the previous sub-section. The kernel

handles the case where the pseudo-file-system server and the process that generates the

open request are on different hosts by using existing file system mechanisms that support

process migration [Douglis87].

4. The NFS Pseudo-File-System

Our first application of pseudo-file-systems is a server that provides access to

remote NFS file servers. The pseudo-file-system server translates file system operations

into the NFS protocol and uses the UDP datagram protocol to forward the operations to

NFS file servers. The pseudo-file-system server is very simple. There is no caching, of

either file data or file attributes. The server process is single-threaded, and it multiplexes

itself among requests for different files using the select system call. This avoids the cost

of process creation when NFS files are opened, and eliminates the need to synchronize

threads.

Figure 3 illustrates the communication structure for NFS access under Sprite. An

interesting aspect of the NFS implementation is that the UDP network protocol, which is

used for communication between the pseudo-file server and the NFS server, is not imple

mented in the Sprite kernel. Instead it is implemented by a user-level protocol server

using the pseudo-device mechanism mentioned in Section 3. This approach adds addi

tional overhead to NFS accesses, but illustrates how user-level services may be layered

transparently.

Figure 3 also shows an application accessing the NFS pseudo-file-system from a

Sprite host other than the one executing the pseudo-file-system server. In this case the

kernel's network RPC protocol is used to forward the operation to the pseudo-file-system

server's host. There the regular request-response protocol is used to pass the operation

along to the pseudo-file-system server.

7

I application _I I application J NFS Pseudo- UDPpseudo-
file-system device

I I I I I I UNIX

I

I I
--- --- .7

_____ _;r

I
NFS Server

Sp~te Kernel
I Sprite Kernel

I

---_I I

,J, r J, t
RPC Ethernet UDP

Figure 3. Two user-level servers are used to access a remote NFS file server. The first is
the NFS pseudo-file-system server. In tum, it uses the UDP pseudo-device server to ex
change UDP packets with the NFS file server. The figure also depicts requests to the
NFS pseudo-file-system server arriving over the network from remote Sprite clients us
ing the Sprite network RPC protocol. The arrows indicate the direction of information
flow during a request.

4.1. NFS Performance

We measured the performance of our NFS pseudo-file-system with micro bench

marks that measured individual file system operations, and with a macro benchmark that

measures the system-level cost of pseudo-file-system access. The cost of raw l/0 opera

tions through a pseudo-file-system is obviously going to be higher than the cost of l/0

operations implemented by the kerneL This is especially true for our NFS access which

uses two user-level servers for communication. However, when whole applications are

run the effect of pseudo-file-system access is less pronounced. We view the current per

formance as an acceptable trade-off against the ease of implementing a pseudo-file

system with a user-level application.

The tests were run on Sun-3 workstations that run at 16 MHz and have 8 to 16

Mbytes of main memory. The network is a 10 Mbit Ethernet The file servers are

equipped with 400 Mbyte Fujistu Eagle drives and Xylogics 450 controllers. The version

of the Sun operation system is SunOS 3.2 on the native NFS clients, and SunOS 3.4 on

the NFS file servers.

The four cases tested are:

Sprite A Sprite application process accessing a Sprite file server. File access

is optimized using our distributed caching scheme [Nelson88].

UNIX-NFS

Sprite-NFS

A UNIX application process accessing an NFS file server. /tmp is

located on a virtual network disk (ND) that has better writing perfor

mance than NFS.

A Sprite application accessing an NFS file server via a pseudo-file

system whose server process is on the same host as the application. A

Sprite file server is used for executable files and for /tmp.

Sprite-rmt-NFS A Sprite application accessing NFS from a different host than the

pseudo-file-system server's host.

8

Read-Write Performance
Read 1-Meg UNIX-NFS 320 K/s 25.0 msec/8K
Read 1-Meg Sprite 280 K/s 14.3 msec/4K
Read 1-Meg Sprite-NFS 135 K/s 59.3 msec/8K
Read 1-Meg Sprite-rmt-NFS 75 K/s 106.7 msec/8K
Write 1-Meg UNIX-NFS 60K/s 133.3 msec/8K
Write 1-Meg Sprite 320 K/s 12.5 msec/4K
Write 1-Meg Sprite-NFS 40K/s 200.0 msec/8K
Write 1-Meg Sprite-rmt-NFS 31 K/s 258.0 msec/8K

Table 3. 1/0 perfonnance when reading and writing a remote file. The file is in the
server's main-memory cache when reading. Sprite uses 4 Kbyte block size for network
transfers while NFS uses an 8 Kbyte block size. The write bandwidth is lower when ac
cessing the NFS server because it writes its data through to disk while the Sprite file
server implements delayed writes.

The raw l/0 performance for Sprite files, NFS files, and NFS files accessed from
Sprite is given in Table 3. In all cases the file is in the file server's main memory cache.
Ordinarily Sprite caches native Sprite files in the client's main memory. For the read
benchmark we flushed the client cache before the test. For the write benchmark we dis
abled the. client cache. The native Sprite read bandwidth is lower than NFS read
bandwidth because Sprite uses a smaller blocksize, 4K verses 8K. The native Sprite
write bandwidth is an order of magnitude greater than NFS write bandwidth because NFS
file servers write their data through to disk before responding, while Sprite servers
respond as soon as the data is in their cache.

We measured system-level performance of the NFS pseudo-file-system using the
Andrew file system benchmark. This has been developed at CMU by M. Satyanarayanan
[Howard88]. It includes several file system intensive phases that copy files, examine the

files a number of times, and compile the files 4 into an executable program. The results
of running this benchmark are given in Table 4. We think a 33-41% slowdown relative

Andrew Benchmark Performance
Sprite 522 sees 0.69
UNIX-NFS 760 sees 1.0
Sprite-NFS 1008 sees 1.33
Sprite-rmt-NFS 1074 sees 1.41

Table 4. The perfonnance of the Andrew benchmark on different kinds of file systems.
The elapsed time in seconds and the relative slowdown compared to the native NFS case
are given.

4 The version we used here has been modified to eliminate machine dependencies, so the
results are not directly comparable with those reported in [Howard88] and [Nelson88].

9

to the native UNIX implementation is an acceptable trade-off against the cost of a

kernel-level NFS implementation.

The user-level implementation of the UDP protocol has a large effect on the Sprite

NFS bandwidths given in Table 4. The cost to send data via a UDP packet and receive a

one-byte acknowledgment packet is plotted in Figure 4. At small transfer sizes the over

head is over twice that of the UNIX kernel implementation. Larger transfers take about

25% longer.

The cost of sending data to a local pseudo-file-system (or pseudo-device) server is

plotted in Figure 4 as the line labeled ''local pdev' '. Note that the per-byte cost that

comes from copying the data to the server is dominated by the base cost, which is about 3

msec. This is the time for two process switches and associated scheduling and synchron

ization overhead. This part of the kernel has remained untuned since its initial imple

mentation and can mostly likely be improved.

so ----·------------··r···-----·····--··T·------------·--r····-············1
l l l+ UNIX-to-Sprite

i i i ___ .. .,.-·· i
I I I •# I

40 - ----------r----------r--:~::.~.::;r~=--=:::1 Sprite-to-UNIX

M : : _.. _.....;f' :
i
1 30
I
i
s
e
c 20
0
n
d
s

10

0

! :/·· "'*·"· ! i
: ... f : :

................... ~---------·--··: ... ··+-:..,...·-·····----··j--···------·-·····~ UNIX-to-UNIX
: _.,··:. ·"!" :
: .·;,y· : :

.~::;:·> 1 1
.. ..-:1: i .

•• I I I : :

···.~.):~:l···j--··-····--·-··t·----·--· ····-·l::i:.· --····-----1::_::·
/ · i

0

T--··--·r--·-·--:------·-j local pdev

+- -t- _._- -r---- -r---- -r
2 4 6 8

Kilobytes

Figure 4. Timing of the UDP protocol. The receiver is always a UNIX process to model

the use of UDP to communicate with the UNIX NFS server. Each Sprite-to-UNIX pack
et exchange requires two request-response transactions with the Sprite UDP server. The

cost of accessing the UDP service via the pseudo-device request-response protocol is

given by the line labeled "local pdev". The small slope of this line indicates that copy

costs are not that significant but process scheduling and context switching have a large
impact on performance.

10

5. Work In Progress

There are two additional aspects of pseudo-file-systems that are currently under

development: file caching and automatic recovery. Sprite uses large file caches on both

client and server machines, resulting in efficient file access even for diskless workstations

[Nelson88]. The pseudo-file-system mechanism currently bypasses the caches, but we

plan to modify the kernel so that blocks from pseudo-file-systems may be cached in the

same way as blocks from "native" Sprite files. The pseudo-file-system server will

define the caching policy, while the kernel will access the cache in response to 1/0

requests and do LRU replacement. This requires additional operations between the ker

nel and the pseudo-file-server for cache flushing and cache invalidation.

We are extending the kernel's recovery system for regular Sprite file servers to

include pseudo-file-system servers. The kernel includes facilities for automatic detection

of host crashes, recreation of the state of our file servers, and retry of operations with

recovered servers. The system is based on state duplicated on the file servers and on

other Sprite hosts. After a server crashes its state can be recovered from the other hosts.

We are extending this facility to support recovery of pseudo-file-system servers by allow

ing them to register per-file state with their local kernel. The state gets propagated back

to other hosts that have files open in the pseudo-file-system. This will allow us to recover

either from a crashed server process or from the crash of the host running the server pro

cess.

6. Related Work

We classify pseudo-file-systems as a mechanism for system extension; a pseudo

file-system is a general mechanism that allows a new system service to be added to the

system without modifying the operating system kernel. Many systems are only extensi

ble by adding new code to the operating system kernel. This is true for many versions of

UNIX, i.e. with the gnode and vnode architectures, and with the Version 8 streams facil

ity [Ritchie84]. Other systems use the run-time library for system extensions

[Rees86][Brownbridge82], or they use a message-based architecture and implement all

services outside the kernel [Cheriton84].

The differences between pseudo-file-systems and these other approaches stem from

features in the Sprite kernel that simplify the pseudo-file-system server process. The

features implemented in the generic top-level layers of the file system do not have to be

duplicated by the server. This includes the prefix table mechanism for distributed nam

ing, blocking and non-blocking 1/0, and (eventually) crash detection, automatic recovery,

and data caching. Library-based systems and message-passing kernels, on the other

hand, require the service, or library, to implement these functions.

7. Conclusion

Pseudo-file-systems are a natural extension of mechanisms already present in Sprite

to support its distributed file system. The file system name space is structured into

domains controlled by different servers. Pseudo-file-systems are treated as another

domain type that is automatically integrated into the name space by the prefix table

mechanism. Remote access is handled in the kernel with the same mechanisms used to

11

access remote Sprite setvers. The kernel also provides parameter checking, blocking and

non-blocking JJO, caching and automated error recovery. (These last two features are

currently being extended for use by pseudo-file-systems.) Thus the operating system pro

vides the basic structure for a file system and a pseudo-file-system setver can extend the

structure.

Our performance measurements show a distinct penalty for user-level implementa

tion. We knew in advance this would be true, but we have found the performance of our

NFS pseudo-file-system to be acceptable. We also anticipate further improvements by
tuning our basic process switching and scheduling mechanisms.

References
Brownbridge82.

Cheriton84.

Douglis87.

Howard88.

Kleiman86.

Nelson88.

Ousterhout88.

Rees86.

Ritchie84.

Rodriguez86.

Sandberg85.

Welch86a.

Welch86b.

Welch88.

D. R. Brownbridge, L. F. Marshall and B. Randell, "The Newcastle Connection or

UNIXes of the World Unite!", Software Practice and Experience 12 (1982), 1147-

1162.

D. R. Cheriton, "The V Kernel: A software base for distributed systems.", IEEE
Software 1, 2 (Apr. 1984), 19-42.

F. Douglis, "Process Migration in Sprite", Technical Report UCB/Computer Science

Opt. 87/343, University of California, Berkeley, Feb. 1987.

J. H. Howard, M. L. Kazar, S. G. Menees, D. A. Nichols, M. Satyanarayanan, R.N.

Sidebotham and M. J. West, "Scale and Performance in a Distributed File System",

Trans. Computer Systems, Feb. 1988,51-81.

S. Kleiman, "Vnodes: An Architecture for Multiple File System Types in Sun

UNIX", USENIX Conference Proceedings, June 1986,238-247.

M. Nelson, B. Welch and J. Ousterhout, "Caching in the Sprite Network File

System", Trans. Computer Systems 6, 1 (Feb. 1988), 134-154.

J. Ousterhout, A. Cherenson, F. Douglis, M. Nelson and B. Welch, "The Sprite

Network Operating System" ,IEEE Computer 21,2 (Feb. 1988), 23-36.

J. Rees, P. H. Levine, N. Mishkin and P. J. Leach, "An Extensible 1/0 System",

USENIX Association 1986 Summer Conference Proceedings, June 1986, 114-125.

D. Ritchie, "A Stream Input-Output System", The Bell System Technical Journa/63,
8 Part 2 (Oct. 1984), 1897-1910.

R. Rodriguez, M. Koehler and R. Hyde, "The Generic File System", USENIX
Conference Proceedings, June 1986,260-269.

R. Sandberg, D. Goldberg, S. Kleiman, D. Walsh and B. Lyon, "Design and

Implementation of the Sun Network Filesystem", USENIX Conference Proceedings,
June 1985, 119-130.

B. B. Welch and J. K. Ousterhout, "Prefix Tables: A Simple Mechanism for Locating

Files in a Distributed Filesystem", Proc. of the 6th JCDCS, May 1986, 184-189.

B. B. Welch, "The Sprite Remote Procedure Call System", Technical Report

UCB/Computer Science Opt. 86/302, University of California, Berkeley, June 1986.

B. B. Welch and J. K. Ousterhout, "Pseudo-Devices: User-Level Extensions to the

Sprite File System", Proc. of the 1988 Summer USENIX Conf., June 1988, 184-189.

12

